Reconstruction at the Si(100)-SiO₂ interface

Angelo Bongiorno¹,², Alfredo Pasquarello¹,², Mark S. Hybertsen,³ and L. C. Feldman⁴

¹ Institute of Theoretical Physics (ITP), EPFL, Lausanne, Switzerland, ² IRRMA, Lausanne, Switzerland, ³ Agere Systems, Murray Hill, New Jersey, USA, ⁴ Department of Physics and Astronomy, Vanderbilt University, Tennessee, USA

We characterize the structure of the Si(100)-SiO₂ interface at the atomic scale by combining Rutherford ion scattering measurements and theoretical modeling. Using varying ion energies in the channeling geometry, we obtain a measure of Si displacements at the interface. To interpret our experimental results, we generate realistic atomic-scale models using a first-principles approach and carry out ion scattering simulations based on classical interatomic potentials. Comparison between experiment and theory provides evidence for a reconstruction involving the upper layer of the silicon substrate.