Ab initio molecular dynamics simulations of 13-atom metal clusters

C. M. Chang

Department of Physics, National Dong Hwa University, Hualien, Taiwan, R.O.C.

abstract

Atomic geometries, electronic structures, and magnetic moments of several metal clusters with 13 atoms are studied by ab initio density-functional calculations. The ground state structures of 13-atom metal clusters were previously assumed to be icosahedron, cuboctahedron, or decahedron. However, in this study, using ab initio molecular dynamics simulations, we find another low-lying energy state with a buckled bi-planar structure that has C_{2v} symmetry. The spin magnetic moments for the buckled bi-planar structure are usually lower than for the icosahedral structure, which are more consistent with existing experimentally measured values. This novel buckled bi-planar structure of 13-atom cluster should be a common low-lying energy state for the late transition metals (with d electrons more than half filled).