The infrared absorption spectrum of Germanium and Silicon calculated from first principles

Gernot Deinzer and Dieter Strauch
Institut für theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

In this work, the infrared absorption spectra of Germanium and Silicon are investigated. Due to the inversion symmetry of these crystals, the dominant part of the spectrum is given by two-phonon processes. To determine this spectrum, one needs the knowledge of the dipole moment of the crystal. By expanding the dipole moment, one realises that the important contribution is given by the nonlinear dipolecoefficients, which are third-order derivatives of the total energy of the crystal with respect to an electric field (once) and atomic displacements (twice). We have applied density-functional perturbation theory up to third order \[1,2\] to determine these expansion coefficients. With the knowledge of the nonlinear dipolecoefficients, we have evaluated the susceptibility of the crystal and afterwards the absorption spectrum. Compared with experimental data \[3,4\] our spectra are excellent. Both the shape and the intensities show a good agreement without using any experimental input.