Ab-initio study of gas adsorption on carbon nanotubes

S. Picazzi¹, F. Di Gregorio¹, S. Santucci¹, L. Lozzi¹ and B. Delley²
1. INFM - Dip. Fisica, Univ. L’Aquila, 67010 Coppito (AQ), Italy
2. Paul Scherrer Institut, WHGA/123, Villigen PSI, Switzerland

Carbon nanotubes have recently been proposed as chemical sensors¹, due to their fast response and high sensitivity towards environmental gaseous molecules. However, the chemical and physical interactions between molecules and sensing nanotubes are not yet completely understood. Within this framework, first principles calculations within the density functional theory have been performed for simple molecules (such as NO₂ and CO) adsorbed on (10,0) carbon nanotubes (CNT), using the Dmol³ code. Our results show that the adsorption process of both CO and NO₂ is physisorption, with a pretty small binding energy. NO₂ and CO molecules are charge acceptor and donor, respectively. The CNT density of states is sensitive to the adsorption of NO₂, with a strong peak close to the CNT valence band maximum, leading to a p-type conductivity. On the other hand, CO adsorption does not alter the CNT electronic properties. These findings are in excellent agreement with experimental conductivity measurements.