<< output from stdout >> << output from stdout >> sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it sp5-5.frascati.enea.it yes Program PHONON v.4.1CVS starts ... Today is 11Aug2009 at 7:56:33 Parallel version (MPI) Number of processors in use: 12 R & G space division: proc/pool = 12 Ultrasoft (Vanderbilt) Pseudopotentials Planes per process (thick) : nr3 = 56 npp = 5 ncplane = 4480 Planes per process (smooth): nr3s= 36 npps= 3 ncplanes= 1728 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 5 261 9231 3 105 2339 32 384 2 5 261 9231 3 105 2335 31 383 3 5 261 9231 3 105 2335 31 383 4 5 261 9231 3 105 2337 31 383 5 5 261 9231 3 105 2341 33 383 6 5 261 9231 3 105 2333 31 383 7 5 261 9231 3 105 2337 31 383 8 5 262 9232 3 105 2337 31 383 9 4 262 9232 3 105 2341 31 383 10 4 262 9232 3 104 2334 31 383 11 4 263 9231 3 104 2332 31 383 12 4 263 9231 3 104 2328 31 383 tot 56 3139 110775 36 1257 28029 375 4597 Check: negative/imaginary core charge= -0.000002 0.000000 bravais-lattice index = 0 lattice parameter (a_0) = 14.6248 a.u. unit-cell volume = 1658.9051 (a.u.)^3 number of atoms/cell = 20 number of atomic types = 4 kinetic-energy cut-off = 25.0000 Ry charge density cut-off = 250.0000 Ry convergence threshold = 1.0E-10 beta = 0.7000 number of iterations used = 4 Exchange-correlation = SLA PW PBE PBE (1434) celldm(1)= 14.62477 celldm(2)= 0.00000 celldm(3)= 0.00000 celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.7373 0.0000 0.0000 ) a(2) = ( 0.0000 1.0000 0.0000 ) a(3) = ( 0.0000 0.0000 0.7193 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.3564 0.0000 0.0000 ) b(2) = ( 0.0000 1.0000 0.0000 ) b(3) = ( 0.0000 0.0000 1.3902 ) Atoms inside the unit cell: Cartesian axes site n. atom mass positions (a_0 units) 1 La 138.9055 tau( 1) = ( 0.03770 0.25000 0.71225 ) 2 La 138.9055 tau( 2) = ( 0.33094 0.75000 0.35259 ) 3 La 138.9055 tau( 3) = ( 0.69958 0.75000 0.00707 ) 4 La 138.9055 tau( 4) = ( 0.40633 0.25000 0.36674 ) 5 Mn1 54.9380 tau( 5) = ( 0.00000 -0.00000 0.35966 ) 6 Mn1 54.9380 tau( 6) = ( 0.36864 -0.00000 0.00000 ) 7 Mn2 15.9994 tau( 7) = ( 0.00000 0.50000 0.35966 ) 8 Mn2 15.9994 tau( 8) = ( 0.36864 0.50000 0.00000 ) 9 O 15.9994 tau( 9) = ( 0.35598 0.25000 0.06246 ) 10 O 15.9994 tau(10) = ( 0.01266 0.75000 0.42212 ) 11 O 15.9994 tau(11) = ( 0.38130 0.75000 0.65687 ) 12 O 15.9994 tau(12) = ( 0.72462 0.25000 0.29721 ) 13 O 15.9994 tau(13) = ( 0.22429 0.04499 0.51988 ) 14 O 15.9994 tau(14) = ( 0.14435 0.95501 0.16021 ) 15 O 15.9994 tau(15) = ( 0.51298 0.54500 0.19946 ) 16 O 15.9994 tau(16) = ( 0.59294 0.45500 0.55912 ) 17 O 15.9994 tau(17) = ( 0.51298 0.95501 0.19945 ) 18 O 15.9994 tau(18) = ( 0.59293 0.04499 0.55912 ) 19 O 15.9994 tau(19) = ( 0.22430 0.45500 0.51988 ) 20 O 15.9994 tau(20) = ( 0.14434 0.54500 0.16021 ) Computing dynamical matrix for q = ( 0.0000000 0.0000000 0.0000000 ) 3 Sym.Ops. (with q -> -q+G ) G cutoff = 1354.4349 ( 9231 G-vectors) FFT grid: ( 56, 80, 56) G cutoff = 541.7740 ( 2339 G-vectors) smooth grid: ( 36, 48, 36) number of k points= 60 gaussian broad. (Ry)= 0.0001 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0156250 k( 2) = ( 0.0000000 0.0000000 0.3475456), wk = 0.0312500 k( 3) = ( 0.0000000 0.0000000 -0.6950913), wk = 0.0156250 k( 4) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0312500 k( 5) = ( 0.0000000 0.2500000 0.3475456), wk = 0.0625000 k( 6) = ( 0.0000000 0.2500000 -0.6950913), wk = 0.0312500 k( 7) = ( 0.0000000 -0.5000000 0.0000000), wk = 0.0156250 k( 8) = ( 0.0000000 -0.5000000 0.3475456), wk = 0.0312500 k( 9) = ( 0.0000000 -0.5000000 -0.6950913), wk = 0.0156250 k( 10) = ( 0.3390888 0.0000000 0.0000000), wk = 0.0312500 k( 11) = ( 0.3390888 0.0000000 0.3475456), wk = 0.0625000 k( 12) = ( 0.3390888 0.0000000 -0.6950913), wk = 0.0312500 k( 13) = ( 0.3390888 0.2500000 0.0000000), wk = 0.0312500 k( 14) = ( 0.3390888 0.2500000 0.3475456), wk = 0.0625000 k( 15) = ( 0.3390888 0.2500000 -0.6950913), wk = 0.0312500 k( 16) = ( 0.3390888 -0.5000000 0.0000000), wk = 0.0312500 k( 17) = ( 0.3390888 -0.5000000 0.3475456), wk = 0.0625000 k( 18) = ( 0.3390888 -0.5000000 -0.6950913), wk = 0.0312500 k( 19) = ( -0.6781776 0.0000000 0.0000000), wk = 0.0156250 k( 20) = ( -0.6781776 0.0000000 0.3475456), wk = 0.0312500 k( 21) = ( -0.6781776 0.0000000 -0.6950913), wk = 0.0156250 k( 22) = ( -0.6781776 0.2500000 0.0000000), wk = 0.0312500 k( 23) = ( -0.6781776 0.2500000 0.3475456), wk = 0.0625000 k( 24) = ( -0.6781776 0.2500000 -0.6950913), wk = 0.0312500 k( 25) = ( -0.6781776 -0.5000000 0.0000000), wk = 0.0156250 k( 26) = ( -0.6781776 -0.5000000 0.3475456), wk = 0.0312500 k( 27) = ( -0.6781776 -0.5000000 -0.6950913), wk = 0.0156250 k( 28) = ( -0.3390888 0.2500000 0.0000000), wk = 0.0312500 k( 29) = ( -0.3390888 0.2500000 -0.3475456), wk = 0.0625000 k( 30) = ( -0.3390888 0.2500000 0.6950913), wk = 0.0312500 k( 31) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0156250 k( 32) = ( 0.0000000 0.0000000 0.3475456), wk = 0.0312500 k( 33) = ( 0.0000000 0.0000000 -0.6950913), wk = 0.0156250 k( 34) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0312500 k( 35) = ( 0.0000000 0.2500000 0.3475456), wk = 0.0625000 k( 36) = ( 0.0000000 0.2500000 -0.6950913), wk = 0.0312500 k( 37) = ( 0.0000000 -0.5000000 0.0000000), wk = 0.0156250 k( 38) = ( 0.0000000 -0.5000000 0.3475456), wk = 0.0312500 k( 39) = ( 0.0000000 -0.5000000 -0.6950913), wk = 0.0156250 k( 40) = ( 0.3390888 0.0000000 0.0000000), wk = 0.0312500 k( 41) = ( 0.3390888 0.0000000 0.3475456), wk = 0.0625000 k( 42) = ( 0.3390888 0.0000000 -0.6950913), wk = 0.0312500 k( 43) = ( 0.3390888 0.2500000 0.0000000), wk = 0.0312500 k( 44) = ( 0.3390888 0.2500000 0.3475456), wk = 0.0625000 k( 45) = ( 0.3390888 0.2500000 -0.6950913), wk = 0.0312500 k( 46) = ( 0.3390888 -0.5000000 0.0000000), wk = 0.0312500 k( 47) = ( 0.3390888 -0.5000000 0.3475456), wk = 0.0625000 k( 48) = ( 0.3390888 -0.5000000 -0.6950913), wk = 0.0312500 k( 49) = ( -0.6781776 0.0000000 0.0000000), wk = 0.0156250 k( 50) = ( -0.6781776 0.0000000 0.3475456), wk = 0.0312500 k( 51) = ( -0.6781776 0.0000000 -0.6950913), wk = 0.0156250 k( 52) = ( -0.6781776 0.2500000 0.0000000), wk = 0.0312500 k( 53) = ( -0.6781776 0.2500000 0.3475456), wk = 0.0625000 k( 54) = ( -0.6781776 0.2500000 -0.6950913), wk = 0.0312500 k( 55) = ( -0.6781776 -0.5000000 0.0000000), wk = 0.0156250 k( 56) = ( -0.6781776 -0.5000000 0.3475456), wk = 0.0312500 k( 57) = ( -0.6781776 -0.5000000 -0.6950913), wk = 0.0156250 k( 58) = ( -0.3390888 0.2500000 0.0000000), wk = 0.0312500 k( 59) = ( -0.3390888 0.2500000 -0.3475456), wk = 0.0625000 k( 60) = ( -0.3390888 0.2500000 0.6950913), wk = 0.0312500 PseudoPot. # 1 for La read from file La.pbe-nsp-van.UPF Pseudo is Ultrasoft + core correction, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 907 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 6 coefficients, rinner = 1.200 1.200 1.200 1.200 1.200 PseudoPot. # 2 for Mn read from file Mn.pbe-sp-van.UPF Pseudo is Ultrasoft, Zval = 15.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 3 for Mn read from file Mn.pbe-sp-van.UPF Pseudo is Ultrasoft, Zval = 15.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 4 for O read from file O.pbe-van_ak.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 Atomic displacements: There are 60 irreducible representations Representation 1 1 modes - To be done Representation 2 1 modes - To be done Representation 3 1 modes - To be done Representation 4 1 modes - To be done Representation 5 1 modes - To be done Representation 6 1 modes - To be done Representation 7 1 modes - To be done Representation 8 1 modes - To be done Representation 9 1 modes - To be done Representation 10 1 modes - To be done Representation 11 1 modes - To be done Representation 12 1 modes - To be done Representation 13 1 modes - To be done Representation 14 1 modes - To be done Representation 15 1 modes - To be done Representation 16 1 modes - To be done Representation 17 1 modes - To be done Representation 18 1 modes - To be done Representation 19 1 modes - To be done Representation 20 1 modes - To be done Representation 21 1 modes - To be done Representation 22 1 modes - To be done Representation 23 1 modes - To be done Representation 24 1 modes - To be done Representation 25 1 modes - To be done Representation 26 1 modes - To be done Representation 27 1 modes - To be done Representation 28 1 modes - To be done Representation 29 1 modes - To be done Representation 30 1 modes - To be done Representation 31 1 modes - To be done Representation 32 1 modes - To be done Representation 33 1 modes - To be done Representation 34 1 modes - To be done Representation 35 1 modes - To be done Representation 36 1 modes - To be done Representation 37 1 modes - To be done Representation 38 1 modes - To be done Representation 39 1 modes - To be done Representation 40 1 modes - To be done Representation 41 1 modes - To be done Representation 42 1 modes - To be done Representation 43 1 modes - To be done Representation 44 1 modes - To be done Representation 45 1 modes - To be done Representation 46 1 modes - To be done Representation 47 1 modes - To be done Representation 48 1 modes - To be done Representation 49 1 modes - To be done Representation 50 1 modes - To be done Representation 51 1 modes - To be done Representation 52 1 modes - To be done Representation 53 1 modes - To be done Representation 54 1 modes - To be done Representation 55 1 modes - To be done Representation 56 1 modes - To be done Representation 57 1 modes - To be done Representation 58 1 modes - To be done Representation 59 1 modes - To be done Representation 60 1 modes - To be done PHONON : 28m29.35s CPU time, 32m43.00s wall time Alpha used in Ewald sum = 2.1000 Representation # 1 mode # 1 Self-consistent Calculation Pert. # 1: Fermi energy shift (Ry) = -0.1197E+53 -0.5317E+37 iter # 1 total cpu time : 2079.9 secs av.it.: 7.9 thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.811E-06 Pert. # 1: Fermi energy shift (Ry) = 0.1871E+51 0.3323E+36 iter # 2 total cpu time : 2475.2 secs av.it.: 19.5 thresh= 0.900E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.473E-05 Pert. # 1: Fermi energy shift (Ry) = -0.1497E+52 0.8308E+35 iter # 3 total cpu time : 2810.2 secs av.it.: 17.2 thresh= 0.218E-03 alpha_mix = 0.700 |ddv_scf|^2 = 0.437E-05 Pert. # 1: Fermi energy shift (Ry) = 0.1497E+52 0.8308E+35 iter # 4 total cpu time : 3154.1 secs av.it.: 15.8 thresh= 0.209E-03 alpha_mix = 0.700 |ddv_scf|^2 = 0.872E-07 Pert. # 1: Fermi energy shift (Ry) = 0.4677E+50 0.4154E+35 iter # 5 total cpu time : 3477.9 secs av.it.: 17.4 thresh= 0.295E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.244E-08