
EPICO - eLab Procedure for Installation and Configuration

Moreno Baricevic
CNR-IOM DEMOCRITOS

Trieste, Italy
baro@democritos.it

Abstract

The need to support new typologies of nodes in a
HPC clustering environment extremely heterogeneous and
rapidly growing, quickly integrating new technologies and
computational solutions, dictated the development of a soft-
ware flexible enough to handle such complexity. At eLab,
in Italy, we developed EPICO, the eLab Procedure for
Installation and COnfiguration, a framework that aims to
satisfy this requirement.

Keywords EPICO, LINUX Clusters, HPC, High-
Performance Computing, Cluster Deployment, Distributed
Installation Procedures, Unattended Installation.

1. Introduction

In the continuously evolving world of HPC, a chal-
lenge that often arises is the integration of new technolo-
gies and hardware solutions in a production environment.
Sometimes, this involves just the addition of new comput-
ing nodes identical to the ones already installed, but in a
research context characterized by occasional and limited
funds, this problem worsen when purchases are spread on
a long period and the new hardware is often one or more
generations advanced in respect of the one already in pro-
duction, or that might carry different interconnection tech-
nologies on-board or incompatible solutions with the previ-
ous hardware.

250 nodes, 1300 cores, 20 different profiles based on
logical typology and hardware requirements. This was the
most important challenge we had to face at eLab, in Italy.
Several small funds spread on many years led to a cluster
that integrated together more than 20 different hardware and
software profiles. Compute nodes with ide, scsi, sata, sas
hard drives; disk-less nodes that rely on external storage;
single and multi-core machines, AMD and INTEL proces-
sors; Gigabit, Myrinet, Infiniband interconnections; some-
times bleeding-edge hardware not yet supported by the ker-
nel or LINUX distribution used on the other nodes.

The flexibility required to handle such heterogeneous
hardware, is not always satisfied by already available instal-
lation and management software. Facing this problem, we
decided to develop our own software solution. In this short
paper, I will describe the evolution of EPICO, a software
that aims to satisfy this requirement.

2. What is EPICO

EPICO, eLab Procedure for Installation and
COnfiguration, is a framework for unattended and
distributed deployments of LINUX, focused on the post-
installation and post-configuration for heterogeneous HPC
clusters. It’s made up of a collection of procedures, scripts
and strategies, built brick-by-brick, whenever new hard-
ware was introduced, in more than 10 years of on-the-field
experience.

Fruit of the experience and requirements on extremely
heterogeneous clusters (>250 nodes and ∼20 HW/SW pro-
files at eLab), it has been designed to be extremely flexi-
ble and customizable, able to handle different and indepen-
dent installation profiles based on logical typologies (mas-
ter node, I/O server, computing node) or by single hosts,
and suitable for unattended deployment of a single ad-hoc
machine as well as large heterogeneous clusters, making a
node ready to enter the production environment and be op-
erative at the first reboot after the installation, whatever its
purpose (master/storage/compute node).

EPICO is based on open standards, well-known proto-
cols, widely used open/free tools and standard procedures.
As the tools and standards it depends on, EPICO is Open
and Free (as in free beer and as in freedom), uncondition-
ally modifiable to expand the customization possibilities by
adding new scripts and integrating new procedures, allow-
ing to rapidly integrate new resources into the production
environment without much effort.

Flexible and customizable, as well as complex, this soft-
ware is aimed at experienced LINUX system administra-
tors, or skilled users with scripting experience and some
knowledge about the services involved (PXE, DHCP, DNS,

159

mailto:baro@democritos.it

NFS, RPM-based package repositories, queue systems).
It was based and tested on RPM-based LINUX distribu-
tions using the Anaconda/Kickstart installer[1] (Red Hat[2],
CentOS[3], Fedora[4], White Box[5], . . .), even though
scripts and procedures should work with other distributed
installers too (e.g. FAI[6] for Debian[7] / Ubuntu[8]).

3. Evolution

Initially, we decided just to set up a network booting
environment based on standard features and services like
PXE/DHCP/TFTP and providing a repository for the pack-
ages via NFS. Different Kickstart configuration files were
just supposed to setup a basic installation of Red Hat or any
derivative distribution like White Box, Fedora and CentOS.
Each different kind of machine was handled providing dif-
ferent Kickstart files.

The post-configuration issue, a set of procedures needed
to integrate a freshly installed machine into the cluster in
order to make it immediately available for production, was
solved using the post-configuration section of the Kickstart
file (%post). As soon as the number and the entity of the
customizations grown up, the problem of maintaining and
keeping consistent many copies of, in principle, the same
file, had to be solved. We decided to move the %pre and
%post sections outside the Kickstart file, in order to keep
the customization script (initially a single bash script) as
a separate file to be included by the Kickstart files. The
Kickstart files were still providing the instructions for the
hard-disk partitioning, not yet handled externally, and the
configuration differences that defined the software/logical
profiles (master node, storage nodes, computing nodes, . . .).

Still, some nodes needed different instructions, depend-
ing on the available hardware, so a single script was not yet
the solution. We made the scripts aware of the hardware,
using lspci, for instance, and thus providing conditional
statements for the execution of portions of the script. This
was not yet enough, though, as maintaining a single script
with everything and lots of conditional statements was get-
ting troublesome. The next obvious step was to split this
huge script in several tasks, basically one for each service,
feature, piece of hardware or even just debug and test. A
task-list, specific for each profiles was defining and loading
the task scripts required for the specific configuration of a
node, a subset or a pool of nodes, or a profile.

At this point we had the need to centrally separate and
manage profiles, pools, subset and single nodes. Some of
the solutions adopted involved the subnetting of the network
and the definition of meaningful host names, in order to de-
fine subsets of nodes based on common characteristics iden-
tified by the IP or the name. The TXT entry of the DNS was
exploited to supply some information too. At some point we

also adopted the kernel cmdline as a vector for information
parsed out and used during the installation.

All this led to a collection of scripts and procedures, built
brick-by-brick in 10 years of experience in an extremely
heterogeneous cluster environment, that we called EPICO,
eLab Procedure for Installation and COnfiguration.

INSTALLATION

PER-PROFILE / PER-HOST CONFIGURATION
AND CUSTOMIZATIONNETBOOT

Kickstart/Anaconda

POST-INSTALL & POST-CONFIG

Customization through
Post-installation

KICKSTART CONFIGURATION FILE

(HD partitioning, network setup, RPM
packages list, basic host configuration)

PXE

DHCP

TFTP

KERNEL
+

INITRD

POST-CONFIGURATION FILE

TASKS / SCRIPTS

PACKAGES / ARCHIVES

PXE CONFIGURATION FILE

(kernel, initrd, KS config, EPICO
parameters on kernel cmdline)

Figure 1. EPICO: installation process

RAM

PER-PROFILE / PER-HOST CONFIGURATION
AND CUSTOMIZATIONNETBOOT

POST-BOOT

Customization at
creation time and

through post-conf and
post-boot procedures

INITRD / INITRAMFS BUILD PROCESS
+ POST-CONFIGURATION

(RPM packages list, network setup,
host configuration)

PXE

DHCP

TFTP

KERNEL
+

INITRD or
INITRAMFS

TASKS / SCRIPTS executed from the
EPICO server/masternode after client's
port-knocking at boot-time (rc.local)

PACKAGES / ARCHIVES

PXE CONFIGURATION FILE

(kernel, initrd or initramfs, post-config
parameters on kernel cmdline and as

DHCP vendor-class-identifier)

Figure 2. EPICO: ramdisk/ramfs for disk-less
nodes, rescue and HW test

4. Deployment and usage

EPICO has been used for the deployment of 15 HPC and
GRID clusters (production level), for a total of about 900
nodes, as well as for ”hands-on” laboratories, HPC/GRID
schools and training courses aimed at technical and scien-
tific personnel.

160

Among the organizations that are using EPICO in produc-
tion environments:

• >250 nodes with 20 HW/SW profiles at SISSA /
CNR-IOM DEMOCRITOS, Trieste - ITALY

• >100 nodes with 6 HW/SW profiles at ICMS, TEM-
PLE University, Philadelphia - USA

• >50 nodes with 5 HW/SW profiles on a GRID/HPC
cluster at MERCURIO, Udine - ITALY

• 2 HPC clusters at ADDIS ABABA UNIVERSITY, Ad-
dis Ababa - ETHIOPIA

• 1 HPC cluster at MS2, SPIN S.r.l., Trieste - ITALY

• >50 nodes on 2 GRID clusters at eLab, Trieste -
ITALY

Currently, an EPICO server can be deployed by mean
of a USB key, on which EPICO must be downloaded (see
section 6) and configured, and then providing a boot loader
and a repository for the packages. The more convenient
way to supply the latter, is to use a bootable installation
CD/DVD of a Red Hat based distribution, which provides
both the boot loader and the repository. An external reposi-
tory can be used as well (network-based: NFS/HTTP/FTP;
or on local storage as a an HD or USB key), but in this
case the boot loader must be provided through an installa-
tion media (CD/DVD-ROM) or PXE boot. Of course, if
an EPICO server is already available, it provides the PXE
boot, the EPICO framework itself over NFS, and an NFS-
based repository, out-of-the-box. Moreover, EPICO can be
deployed on any LINUX machine, if configured properly,
whatever the distribution in use (in principle, it could be
any LINUX or UNIX machine, either physical or virtual).
To summarize, these are some of the supported combina-
tions:

• USB key + RH/CentOS DVD (boot+RPM repo)

• USB key + RH/CentOS CD/DVD (boot) + external
RPM repo

• USB key + PXE (boot) + RPM repo

• from an already available EPICO SERVER (PXE boot
+ EPICO over NFS + RPM repo)

• direct deployment on any LINUX machine (indepen-
dently from the distribution)

Some promising preliminary tests have been conducted
to create a self-consistent 8GB bootable USB key, with
EPICO and the package repository as well.

4.1. How to handle complexity

The nodes that compose a cluster, can be divided by log-
ical profiles, depending on the main task that the nodes are
supposed to accomplish or the features they are going to
provide; for instance, a master node or a front-end need dif-
ferent software than computing nodes, and probably will
have different hardware requirements than storage nodes,
as well as an I/O server will need different software than
management and monitoring nodes or a workstation. Fur-
thermore, hardware/software profiles, pools and subsets can
be identified by the differences in hardware configuration,
for instance nodes with ide/scsi/sata/sas hard disks, with or
without raid configuration, attached to NAS, SAN, or just
disk-less, with Infiniband/Myrinet/Gigabit networks, with
or without bonding, with AMD or Intel processors, CPU
or GPU oriented, involved in a grid and therefore requiring
grid-enabling software, and so forth.
EPICO handles the following categories:

PROFILES
subset of machines identified and divided by typology,
purpose or major differences: master, iosrv, nodes,
diskless, wks, . . .

SUBPROFILES
ad-hoc installations of single machines with minor
differences related to network settings, partitioning,
. . . , handled using different extensions for the Kick-
start %include files as defined on kernel cmdline
(if the file exists; fallback to default otherwise),
and a post-installation script executed at the end,
if available (master@ICTP, master@TEMPLE, mas-
ter@AAU, . . .).

HOSTS
single machine dedicated to a specific task or with pe-
culiar characteristics (iosrv, node01, storage03, . . .).

POOLS
subset of machines, identified by hostname / IP / sub-
net or DNS TXT entry, with common characteristics
or similar/identical hardware or special purpose (GPU,
gpu01 ⇒ GPU, gpu02 ⇒ GPU)

4.1.1 Customization layers

From the first stage of the network boot-up, the EPICO
server supplies:

• DHCP information

• PXE configuration file, EPICO keywords provided
as kernel cmdline arguments in order to define pro-
files/subprofiles or force specific hosts

161

• kernel/initrd + kernel cmdline options

• Kickstart file

• DNS configuration (hostnames and TXT) to define
pools, subset or customize by hostname/IP

• Kickstart %include files based on IP / hostname / pro-
file

• pre-installation (%pre) and post-installation (%post)
procedures externalized in a logical tree based on pro-
files/hosts or common defaults

• tasks/scripts that will be executed, or not, depending
on a task list specific for each profile or host

• routines that check for hardware availability (e.g. pres-
ence of Infiniband card)

• Packages repository (base + extras)

• Post-boot procedure (startup script executed at each
boot)

• RAMDISK integration (disk-less nodes)

4.1.2 Fallback procedure

Kickstart %include files, list of RPM packages, task-lists
and scripts, are searched for in the following order:

1. ad-hoc (subprofile matching the extension of the files
to be included)

2. host/pool specific (<PROFILE>/hosts.d/<HOST|POOL>)

3. default by profile (<PROFILE>/default/)

4. common (common/)

4.1.3 Main services involved

• PXE: network booting

• DHCP: IP binding + NBP (pxelinux.0)

• TFTP: PXE configuration file, alternative boot-up im-
ages (memtest[9], UBCD[10], . . .)

• NFS: Kickstart + RPM repository (with little modifi-
cation can be adapted to FTP/HTTP(S) based repos)

• POST-BOOT: uses port-knocking, ssh, c3-tools[11]
(distributed shell)

• Configuration/Package Update: uses ssh, c3-tools

5. Future Developments and Open issues

In order to keep an high level of customization, we de-
cided to develop the whole package as a collection of plain
text scripts and configuration files. The complex struc-
ture we obtained allows great flexibility, but some knowl-
edge about the services involved is a requirement, as well
as scripting experience. Unfortunately, this limits its us-
age to experienced sysadmins and skilled users, but we aim
to make it more user-friendly, providing configurators, in-
staller and wrappers that will allow to easily modify con-
figuration settings and parameters that currently have to be
manually altered. Furthermore, we plan to support more
distributions (e.g. Debian/Ubuntu) and newer versions of
RPM based distros already supported, like Red Hat/CentOS
6 and Fedora 14/15.
Among the important issues that we have to face up:

• Redistribution of 3rd party and contribs (non-open li-
censes)

• EPICO as RPM package(s)

• BOOT from usbkey (self-consistent installer + repo)

• Improve HD/USB disk-overy and auto-partitioning

• Terminal and Graphical User Interface (TUI/GUI)

The positive feedback we have received so far, has en-
couraged us to continue the development and make it avail-
able as a free and open “product”, in the hope it can be
useful to the scientific community.

6. Web resources and download

• http://epico.escience-lab.org

• http://eforge.escience-lab.org/gf/project/epico/

• svn co --username anonymous --password anonymous \
https://eforge.escience-ab.org/svn/epico/trunk/distro

References

[1] Anaconda/Kickstart –
http://fedoraproject.org/wiki/Anaconda

[2] Red Hat Enterprise Linux – http://www.redhat.com
[3] CentOS – http://www.centos.com
[4] Fedora Project – http://fedoraproject.org
[5] White Box – http://whiteboxlinux.org
[6] FAI – http://fai-project.org
[7] Debian – http://www.debian.org
[8] Ubuntu – http://www.ubuntu.com
[9] memtest86+ – http://www.memtest.org

[10] UBCD – http://www.ultimatebootcd.com
[11] C3 tools – http://www.csm.ornl.gov/torc/C3

162

http://epico.escience-lab.org
http://eforge.escience-lab.org/gf/project/epico/
http://fedoraproject.org/wiki/Anaconda
http://www.redhat.com
http://www.centos.com
http://fedoraproject.org
http://whiteboxlinux.org
http://fai-project.org
http://www.debian.org
http://www.ubuntu.com
http://www.memtest.org
http://www.ultimatebootcd.com
http://www.csm.ornl.gov/torc/C3

