
Parallel File Systems Assessment

Baricevic Moreno
CNR-IOM DEMOCRITOS

baro@democritos.it

Cozzini Stefano
CNR-IOM DEMOCRITOS

cozzini@democritos.it

Dı́az Gilberto
Departamento de Computación and

Centro de Càlculo Cientı́fico
Universidad de Los Andes

gilberto@ula.ve

Messina Antonio
International Centre for Theoretical Physics

amessina@itcp.it

Abstract

This paper reports our benchmarking work on avail-
able market solutions for parallel filesystems to deal with
I/O in small cluster computing environments. Our aim
is to present performance assessment of different paral-
lel filesystem products. Different solutions were installed
and then benchmarked on a small testing platform. The
goal is to identify and implement the best solution both in
terms of easiness of use and configuration, and in term of
read/write performance. This study, even though limited by
the size and the overall peak performance of the hardware
setup, can give interesting information to research groups
in search of a low cost parallel storage solution for small
medium/size clusters.

Keywords Linux Clusters, Parallel I/O, Parallel Com-
puting, Parallel File Systems, HPC, High-Performance
Computing.

1. Introduction

Parallel Computing is the most powerful tool, in many
areas, for solving problems which have a considerable di-
mension [1]. This is a form of computation where a large
problem can be divided into smaller ones, then, these can be
solved concurrently (“in parallel”) [2]. People use parallel
machines for only one reason: speed. Parallel machines are
certainly no easier or cheaper to use than serial machines,
but they can be much faster [3].

In the application level, we can classify programs that
run on this kind of systems (parallel programs), according
to the intensive use of the different resources present in a
parallel machine:

• Processor intensive applications

• Memory intensive applications

• Disk intensive applications

In order to obtain high performances in this third cate-
gory, the parallel machine must have a file system designed
to give high performance as well. Inadequate I/O capability
can severely degrade overall application performance, par-
ticularly in the current multi-teraflops machines [4]. In the
same way a large problem is divided into smaller problems
which are solved in parallel, a single I/O operation can be
executed in parallel, dividing the data into smaller pieces
and sending them to different storage devices, using sev-
eral I/O controllers and several buses. Parallel file systems
are file systems capable of performing I/O operations using
several I/O devices and several storage devices, at the same
time. Additionally, on a cluster, a parallel file systems en-
able a single-system and consistent view also from the file
system perspective.

Linux Clusters are a very suitable platform for parallel
file systems because they can provide, at the same time, sev-
eral I/O controllers, storage devices and I/O buses natively.
Furthermore, they are currently, the most popular platform
for parallel computing due to their low cost and the avail-
ability of open-source parallel applications [1]. Over the
last decade, they have predominantly populated the TOP500
list.

A large set of cluster tools for the installation, admin-
istration and maintenance of such clusters has been devel-
oped. Additionally, parallel cluster file systems are also
available. If one has to make a decision about which file
system should be chosen, a lot of alternatives have to be
considered. There are freely available file systems like
PVFS and Lustre, as there are proprietary solutions from

97



different hardware vendors, like GPFS from IBM, Panasas
Filesystem from Panasas and many others. All these file
systems allow concurrent access from many clients deliver-
ing a significantly superior performance over NFS.

Figure 1 shows how a parallel file system leverage all of
these resources to execute a parallel I/O operation.

Figure 1. Parallel I/O Operation

In this work we focus on evaluating performance assess-
ment of three parallel file system solutions (PVFS, Lustre,
GPFS) widely used in cluster computing.

We were mainly interested in comparing these products
in terms of installation and management complexity and on
read/write performance on large size files. We did not test
other features like fault tolerance or high availability.

Our effort was to address and mimic the typical situa-
tion of small/medium size HPC clusters which need a sta-
ble parallel filesystem, easy to configure and with decent
performance.

The rest of the paper is organized in four sections. The
second section describes some basic concepts about parallel
file systems and the features of the software products used
here. The third section describes the hardware architecture
and the tools used to benchmark the performance. In the
fourth section we show the results of the work and make the
analysis. Finally, we present the conclusions based on the
outcomes.

2. Parallel File Systems

A file system is a set of methods and data structures used
to organize, store, retrieve and manage information in a per-
manent storage medium, such as a hard disk. Its main pur-
pose is to represent and organize resources storage [5].

The term parallel file system describes a file system so-
lution that supports parallel applications. In particular, they
are able to leverage existing shared storage resources on a
network in order to execute parallel I/O operations. In a

parallel file system environment, all the nodes in the cluster
may be accessing the same file (or files) at the same time,
via concurrent read() and write() requests. Some few
nodes are connected to the storage (known as I/O nodes)
and serve data to the rest of the cluster. The main advan-
tages a parallel file system can provide include a global
name space, scalability, and the capability to distribute large
files across multiple nodes [6].

Some of the most common parallel file systems in use
today are:

• Lustre formerly from Cluster File System, then from
Sun, now from Oracle (GPL);

• GPFS from IBM (private/proprietary license);

• PVFS2 from ANL (GPL).

2.1. Components

In general, a parallel file system implements a particular
form of the following elements which are needed to man-
age, storage and retrieve objects into a set of shared storage
devices.

• Storage Devices: these are hardware components
which are capable of storing information in a perma-
nent way, such as a magnetic hard disk drive. The spe-
cial feature here is that this devices are shared through
a network.

• Storage Servers: these are machines which are in
charge of the management of the storage devices and
make them available through the network.

• Metadata Server: metadata is a general term referring
to information that is about something but not directly
part of it. For example, the size of a file is a very im-
portant piece of information about that file, but it is not
part of the data contained in the file itself. The metadata
server is in charge of the management of metadata [5].

• Client: any machine connected to the network which
make use of the information stored in the parallel file
system.

The figure 2 shows the architecture of the components
that constitute the parallel file system.

2.2. Parallel Virtual File System (PVFS)

PVFS is an open-source, scalable parallel file system. It
is designed specifically to scale to very large numbers of
clients and servers [7], and for parallel applications which
share data across many clients in a coordinated manner.

98



Figure 2. Parallel I/O Operation

PVFS2 servers store data for the parallel file system locally.
The current implementation of this storage relies on UNIX
files to hold file data and a Berkeley DB database to hold
things like metadata. PVFS2 file system may consist of the
following pieces:

• pvfs2-server: is the server daemon component of the
file system. This is the only type of server process, the
pvfs2-server, which is also a UNIX process - so one
could run more than one of these on the same node if
desired. Each instance may act as either a metadata
server, an I/O server, or both at once.

• system interface: is a low level user space API that
provides access to the PVFS2 file system.

• management interface: is an API intended for use
by system administrators and for maintenance applica-
tions and performance monitoring applications.

• Linux kernel driver: is a module that can be loaded
into an unmodified Linux kernel in order to provide
VFS support for PVFS2. This is the component that
allows standard Unix applications to work on PVFS2.

• pvfs2-client: is a user-space daemon that handles
communication between PVFS2 servers and the ker-
nel driver. Its primary function is to convert VFS oper-
ations into system interface operations.

• ROMIO PVFS2 device: is a component of the
ROMIO MPI-IO implementation

2.3. Lustre

Lustre is an open source parallel file system, currently
available only for Linux, that provides a POSIX-compliant

UNIX file system interface. It is installed on seven of the ten
largest high-performance computing clusters in the TOP500
list 1. Among main features of Lustre we have: scalabil-
ity, Lustre scales up or down with respect to the number of
client nodes, disk storage and bandwidth; POSIX compli-
ant, most operations are atomic and clients never stale data
or metadata; high availability, Lustre offers shared stor-
age partitions for data and metadata; security, it is possible
to configure TCP connections only from privileged ports;
Open Source, Lustre is developed under GNU GPL; con-
trolled striping, it is possible to control the stripe count and
stripe size in different ways [8]; snapshots, Lustre includes
LVM technology to create snapshots.
The main components of Lustre are:

• Metadata Target (MDT): is any storage device dedi-
cated to maintain the metadata.

• Metadata Server (MDS): server in charge of MDT
management.

• Object Storage Target (OST): is any storage device
where the real data is stored.

• Object Storage Server (OSS): these are in charge of
the OST management.

• Lustre clients: these are machines which mount the
file system and use it, for example: computational, vi-
sualization or desktop nodes.

2.4. General Parallel File System (GPFS)

GPFS is a commercial parallel file system developed by
IBM. It provides file system services to parallel and serial
applications. GPFS allows parallel applications simulta-
neous access to the same files, or different files, from any
node which has the GPFS file system mounted while man-
aging a high level of control over all file system operations.
This provides global namespace, shared file system access
among GPFS clusters, simultaneous file access from mul-
tiple nodes, high recoverability and data availability due to
native replication mechanisms, the ability to make certain
changes while a file system is mounted, and simplified ad-
ministration that is similar to existing UNIX systems [9].
Its main components are:

• Administration and configuration tools: a very pow-
erful set of commands to setup and manage the parallel
file systems are provided.

• Kernel extension: it’s a set of kernel modules which
provide the interface to the Virtual File System layer
of the operating system.

1The TOP500 list is an initiative to assemble and maintain, since 1993,
a list of the 500 most powerful computer systems (http://www.top500.org)

99



• GPFS Daemon: it’s a Unix-like daemon in charge of
all I/O operations and the consistency of the data.

• GPFS open source portability layer: for nodes
whose operating system is Linux, portable modules
for Linux kernel must be compiled in order to have
a communication channel between GPFS kernel mod-
ules and Linux kernel.

3. Test Platform

Our testbed was based on old hardware recently dis-
missed from the cutting-edge computational platform at
ICTP, but still valid to run such kind of tests. A small Linux
cluster was installed using EPICO [10], a flexible and cus-
tomizable framework for the unattendend deployment of
clusters, and it consists of four storage nodes attached to
a SAN using Fibre Channel connection, 3 compute nodes
and one master node. The SAN is a Sun StorageTek 6140.
Compute nodes have two single-core 2GHz AMD Opteron
processors and 4GB of RAM while Storage nodes have two
single-core 2.5GHz AMD Opteron processors and 4GB of
RAM.

Figure 3 shows the hardware configuration.

Figure 3. Hardware Testbed

Several different layers (both physical and logical) are
involved in such infrastructure. At the lowest level we have
the storage device (SAN) and right on the top of it there is
the Fibre Channel bus. We then have the I/O nodes, which
are providing a standard file system layer and, finally, there
is a network which is connecting the I/O servers in order
to serve the parallel file system layer to the clients. Fig-
ure 4 shows a graphical idea of this layered architecture. In
the next subsection we will briefly present each layer, dis-
cussing which kind of peak performance they are able to
deliver.

Figure 4. Architecture Levels

3.1. SAN Configuration

The storage device has two I/O controllers with 16
500GB SATA hard-disks. The performance reported by the
vendor of such device is in the order of 650 MB/s [11].

The configuration was the following: four independent
volumes (two volumes per I/O controller) and four virtual
devices with RAID 0 (block-level striping without parity or
mirroring, zero-redundancy) for each volume. We assigned
four virtual devices of the same volume to each I/O node,
and they were recognized as: /dev/sdb, /dev/sdc, /dev/sdd
and /dev/sde. Figure 5 shows this configuration.

Figure 5. SAN configuration

3.2. FC System

The Storagetek device is connected to the I/O nodes
through Fibre Channel. FC Cards on the I/O nodes are
Qlogic QLA2344 HBAs (quad-optical 2Gb Fibre Channel

100



to 64-bit, 133MHz PCI-X HBA) and therefore the peak
performance of each channel is of 256 MB/s (200 MB/s
maximum speed at half-duplex, 400 MB/s maximum at full-
duplex). Only one of the four channels was used for each
card/node.

3.3. Standard File Systems

On the top of I/O nodes we evaluated three of the most
common standard file systems: ext3, ext4 and xfs. They
were selected based on their wide spread adoption with re-
spect to other less common choices.

3.4. Network

Two network technologies were used to conduct the ex-
periments: a standard 1Gb Ethernet network and Infiniband
SDR cards. Theoretical peak performance are 125 MB/s
and 1250 MB/s respectively, however we tested the perfor-
mance of both networks using iperf [12] between each cou-
ple of client and server. The average speeds are presented
in table 1:

network Mbits/s Mbytes/s
Ethernet 943 117.87
Infiniband 1740 217.50

Table 1. Network performance summary

It has to be pointed out that we did not perform any fine-
tuning of the network configuration, in order to keep the
same conditions for all parallel file system tests. Moreover,
even though the Infiniband cards and the switch used in this
test are theoretically capable of 10 Gbps, the overhead of
the TCP/IP stack has to be taken in account, as well as the
fact that the peak performance of Infiniband can be reached
only using native protocols and, possibly, RDMA.

When not otherwise specified, all performance tests were
done using Gigabit network. In section 4.4 we present some
comparison for Lustre using both networks.

3.5. Parallel File Systems

Three of the most common parallel file systems were as-
sessed: PVFS2 V2.8.2, Lustre V2.0 and GPFS V3.3 (pro-
vided by the IBM scholar program).

It has to be pointed out that the configuration process of
these parallel file systems requires a considerable amount
of time due to their complexity, and that their tuning could
take even longer. Therefore, we have evaluated them using
their default configuration.

4. Results and Analysis

In this section we describe the benchmarking tools we
used, the different kind of measurements we performed, and
we discuss/analyze the results obtained. We will try to iden-
tify the role, and measure the performance, of each layer
composing our testing platform.

4.1. Performance measurement tools

We used the following two well-known standard tools to
measure performance values for the logical filesystem lay-
ers discussed in the previous section:

• dd: a Unix program that executes a low level copy
and/or convert raw data. In our context it is actually
used as a single benchmark for sequential read and
write, but since it does not need a filesystem, as it
can operate directly on a block device, it is very useful
to get an indication about the raw performance of any
storage device seen by the operating system.

The next step is to put a filesystem on the device be-
ing tested, and then thoroughly benchmark the perfor-
mance with some parallel I/O. For this task we used
iozone.

• iozone [13]: a filesystem benchmark tool able to
tests file I/O performance for the following opera-
tions: read, write, re-read, re-write, read backward,
read strided, fread, fwrite, random read, pread, mmap,
aio read, aio write. In this assessment we are going to
use this tool to test the read and write performance of
both standard and parallel file systems.

4.2. Results on I/O server

To evaluate reading and writing performance on the two
lowest layers of the architecture (the SAN infrastructure
plus the FC channel) we executed the following pair of dd
commands:

dd if=/dev/sdb of=/dev/null bs=512k count=32768

dd if=/dev/null of=/dev/sdb bs=512k count=32768

The above commands were executed at the same time on
the four nodes, and the results for each node were then ag-
gregated in order to compare them with the results obtained
by iozone executing the following command lines:

iozone -i 0 -i 1 -t 4 -+m machinefile -s 16g \
-r 512k -C -+u -R

101



420	  

440	  

460	  

480	  

500	  

520	  

540	  

raw	  (dd)	   ext4	   xfs	   ext3	  

M
B/
s	  

4	  threads,	  16GB	  file,	  512KB	  record	  size	  

Write	  (MB/s)	  

Read	  (MB/s)	  

Figure 6. Performance of standard filesys-
tems

The test was repeated on three different file systems
(ext3, ext4 and xfs)

Figure 6 reports the results for 4 threads concurrently
and independently writing and reading on the different four
devices seen by each node.

Some considerations can be done on the above picture:
raw access by means of (dd) is delivering the best perfor-
mance when reading, but this is not true in case of writing,
where it is actually delivering the lowest performance ob-
served. Our guess is that this should be related to a bet-
ter caching mechanism enabled by filesystems when a write
operation is performed. Filesystem results indicate that xfs
and ext4 are roughly delivering the same performance both
in reading and writing (slightly higher than 500 MB/s in
both cases) while ext3 is less efficient of about 10%.

We also evaluated the role of different block size in over-
all performance. The figure 7 shows the write operation per-
formance of the standard file systems used in the local file
system layer assessment. In this test we used a file of 16GB
size, four instances of iozone (one thread per I/O node) and
different block size. We can notice that overall performance
keeps roughly constant with the block size, this is likely due
to the caching mechanism and the asynchronous I/O varia-
tion.

4.3. Parallel file systems performance

In this section we report performance obtained on paral-
lel filesystems and we compare them against the aggregate
performance obtained on local filesystems. We executed the
same iozone test on the three different parallel file systems
from the four clients which mounted the parallel filesystem
served by I/O servers via Gigabit Ethernet. This is the only,
but important difference among the local and the parallel io-

400	  

420	  

440	  

460	  

480	  

500	  

520	  

540	  

256KB	   512KB	   1MB	   2MB	  

M
B/
s	  

record	  size	  

(write)	  16GB	  file,	  4	  threads	  

ext3	  

ext4	  

xfs	  

raw	  (dd)	  

Figure 7. Block size scalability (File size =
16GB, Four threads)

zone execution. We also note that the default configuration
used for the parallel filesystems does not support striping of
a single file resulting in no gain in performance when ac-
cessing a single file. In some filesystems (e.g. Lustre) this
behavior can be modified as discussed later.

The figures 8 shows the results of this test.

000	  

100	  

200	  

300	  

400	  

500	  

600	  

raw	  (dd)	   ext4	   xfs	   ext3	   gpfs	   pvfs2	   lustre	  

M
B/
s	  

4	  threads,	  16GB	  file,	  512KB	  record	  size	  	  

Write	  (MB/s)	  

Read	  (MB/s)	  

Figure 8. Performance of local and parallel
filesystems

From the figure we can observe that parallel filesystems
are delivering roughly 20% less of the aggregate perfor-
mance as measured on local filesystems. The joint effect
of the additional Gigabit and the overall metadata man-
agement can be responsible of this performance drop. In
reading, though, it is presumable that metadata are not ac-
cessed/updated often, the 20% gap is thus probably only due
to the network, which has not been tuned at all.

We also observe that GPFS delivers half of the perfor-
mance in writing operation with respect to reading, and also
Lustre is showing significantly less performance in writing

102



than reading. PVFS, on the contrary, does not have so much
difference in reading and writing operations, even though
the overall performance is the lowest among them.

In figure 9 we report the comparison of standard file sys-
tems vs. parallel file systems with respect to the size of the
file that is written. From the figure, the cache effect played
by the RAM of the I/O servers (4GB RAM each) is quite
evident for local file systems. Among parallel filesystem,
Lustre seems to be the only one that is affected by the RAM
size of the I/O nodes. We also include here results obtained
with Lustre over Infiniband network (see next subsection
for details) (Lustre (ib) in figure 11). This setup gave much
better results in reading than the same filesystem accessed
via Gigabit, but more or less the same in writing. The write
operation is affected by a slow down due to the job played
by metadata updates, but in reading, we can virtually go as
fast as the hardware can.

We again report a gap between local and parallel filesys-
tem for all the file sizes explored outside the cache effect
zone. As side observation we note also that ext3 shows a
poor cache management in writing operations.

000	  

500	  

1.000	  

1.500	  

2.000	  

2.500	  

3.000	  

128	  MB	   256	  MB	   512	  MB	   1GB	   2GB	   4GB	   8GB	   16GB	  

M
B/
se
c	  

file	  size	  

(write)	  512KB	  record	  size,	  4	  threads	  

ext3	  

ext4	  

gpfs	  

lustre	  

lustre	  (ib)	  

pvfs2	  

xfs	  

000	  

1.000	  

2.000	  

3.000	  

4.000	  

5.000	  

6.000	  

7.000	  

128	  MB	   256	  MB	   512	  MB	   1GB	   2GB	   4GB	   8GB	   16GB	  

M
B/
se
c	  

file	  size	  

(read)	  512KB	  record	  size,	  4	  threads	  

ext3	  

ext4	  

gpfs	  

lustre	  

lustre	  (ib)	  

pvfs2	  

xfs	  

Figure 9. Filesize scalability of local and par-
allel filesystems

We finally show, in figure 10, how performance increases
at the increasing of the number of concurrent files (threads)

written on parallel file systems. Performances, both in read-
ing and writing, for all parallel filesystems are there re-
ported - for Lustre we have also included the results ob-
tained using the Infiniband network. All filesystems in-
creases the overall performance both in reading (panel a)
and writing (panel b). Scalability behavior in reading is
similar for all the filesystems, with Lustre over IB delivering
the best performance. Conversely, on writing performance
GPFS does not scale at all going from two to four threads,
while all the other filesystems show acceptable scalability.

000	  

050	  

100	  

150	  

200	  

250	  

300	  

1	   2	   4	  
M
B/
se
c	  

nr.	  of	  threads	  

(write)	  16GB	  file,	  512KB	  record	  size	  

gpfs	  

lustre	  

pvfs2	  

lustre	  (ib)	  

000	  

100	  

200	  

300	  

400	  

500	  

600	  

1	   2	   4	  

M
B/
se
c	  

nr.	  of	  threads	  

(read)	  16GB	  file,	  512KB	  record	  size	  

gpfs	  

lustre	  

pvfs2	  

lustre	  (ib)	  

Figure 10. Parallel File System Thread scala-
bility

4.4. Further testing with Lustre

Since Lustre gave quite good results in previous tests and
since it is highly configurable, we made a few more tests in
order to better understand the impact of the TCP/IP stack on
the filesystem performance and how the filesystem behaves
with different striping configuration.

At first, we just configured the Lustre net module in
order to use the Infiniband network instead of the standard
Gigabit network. In figure 11 we compare the performance
of a single thread of iozone, with file size of 16GB and block
size of 512KB.

103



68799	  

114018	  

66757	  

131797	  

0	  

20000	  

40000	  

60000	  

80000	  

100000	  

120000	  

140000	  

write	   read	  

KB
/s
	  

lustre	  

lustre	  over	  ib	  

Figure 11. Comparison between Lustre over
Gigabit and Lustre over Infiniband network

The results show an improvement in performance
(around 10%) in reading, and almost no improvement in
writing, which is a bit surprising since we would expect
more or less the same improvement both for reading and
writing.

As the reader can easily verify, with a single iozone
thread we are always getting performance which are lower
than the performance of a single raw device. This is be-
cause Lustre, by default, writes a single file on a single OST,
which means that when a single file is written on the filesys-
tem, this will be actually written on a single LUN of our
SAN.

This behavior can be modified on a per-file or per-
directory basis. In order to check if we can actually get
better performance from Lustre we forced Lustre to stripe
over all available OSTs using the command:

lfs setstripe -c -1 /lustre

Results are quite interesting as shown in Figure 12:
In this case we clearly see that striping over all the OSTs

almost double the performance of a single writer. Another
very interesting observation can be done looking at figure
13, where we report a four threads experiment executed
with striping option active. Surprisingly enough, increas-
ing the number of clients does not negatively affect the per-
formance, but it actually improves it, as clearly shown in
Figure 13. This means that it is actually more convenient
to stripe four files over four OSTs instead of writing them
separately on each OST.

5. Conclusions

We have reported here the results obtained on installing
and benchmarking three different parallel filesystems prod-

68799	  

114018	  

125821	  
131335	  

0	  

20000	  

40000	  

60000	  

80000	  

100000	  

120000	  

140000	  

write	   read	  

KB
/s
	  

lustre	  

lustre	  ib	  
stripe	  all	  

Figure 12. Comparison between Lustre (gbe)
and lustre (ib) with every file striped over all
OSTs

266771	  

423860	  
396043	  

422778	  

0	  

50000	  

100000	  

150000	  

200000	  

250000	  

300000	  

350000	  

400000	  

450000	  

write	   read	  

M
B/
s	  

lustre	  

lustre	  ib	  
stripe	  all	  

Figure 13. Running 4 clients against Lustre
(gbe) and Lustre (ib) with every file striped
over all OSTs

ucts on a small testbed. Our aim was to evaluate them and
acquire some insights on how a low cost parallel file sys-
tem solution can be attached to a small/medium size cluster
for HPC computing. We observed that, from the point of
view of the installations/configuration procedures, all the
parallel filesystems are equivalent: the procedures are not
particularly complicated, at least for HPC sys-admins with
some experience. Results obtained and discussed above on
simple benchmarks, are showing that PVFS2 is not deliver-
ing enough performance with respect to Lustre and GPFS.
Moreover, we report that Lustre was flexible enough to al-
low relatively simple tuning that lead to a net increase of
performance. However we collected just some preliminary
results that are showing quite a complex landscape. This re-
quires some further in-depth testing and careful analysis to
get a full picture of what one can expect in term of perfor-

104



mance and configuration/installation issues. We are there-
fore planning some additional experiments on our testbed
on both hardware and software level. We finally remark
that this work was started as lab session within our recent
training activity at ICTP [14] and then evolved into a more
structured research activity. We still believe that the peda-
gogical motivation is valid and for this reason we are actu-
ally planning to organize materials (scripts, tools and ad hoc
developed documentation) in a package to make it avail-
able to other groups and/or students to easily repeat similar
benchmarking analysis on different testbeds.

References

[1] S. Spier. Parallel file systems, seminar paper “hot topics in
operating systems”, March 2006.

[2] Wikipedia. Parallel computing. http://en.
wikipedia.org/wiki/Parallel_computing,
April 2011.

[3] K. D. Cormen Thomas. Integrating theory and practice in
parallel file systems. pages 64–74, 1993.

[4] A. Saify, G. Kochhar, J. Hsieh and O. Celebioglu. Enhanc-
ing high-performance computing clusters with parallel file
systems. Technical report, DELL, 05 2005.

[5] D. Giampaolo. Practical File System Design with the Be
File System. Morgan Kaufmann Publishers, Inc., 1999.

[6] D. A. Heger. Parallel file system technologies in a linux clus-
ter and grid environment. In Int. CMG Conference, pages
429–442, 2007.

[7] PVFS. PVFS FAQ. http://http://www.pvfs.
org/cvs/pvfs-2-8-branch.build/doc/
pvfs2-faq/pvfs2-faq.php, April 2011.

[8] SUN MICROSYSTEMS. Lustre Operation Manual Version
1.8, March 2010.

[9] IBM Corporation. Concepts, Planning, and Installation
Guide Version 3.3, September 2009.

[10] M. Baricevic. EPICO - eLab Procedure for Installation and
Configuration, submitted to CLCAR2011 conference, May
2011.

[11] SUN MICROSYSTEMS. SPC benchmark 2 executive sum-
mary. http://www.storageperformance.org/
results/b00016_Sun-ST6140-Mirroring_
SPC2_executive-summary.pdf, April 2011.

[12] NLANR/DAST. Iperf. http://iperf.
sourceforge.net, April 2011.

[13] IOzone Filesystem Benchmark, http://www.iozone.
org/docs/IOzone_msword_98.pdf, September
2009.

[14] ICTP Advanced School on High Performance and Grid
Computing. http://cdsagenda5.ictp.it/full_
display.php?ida=a10135, April 2011.

105

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Parallel_computing
http://http://www.pvfs.org/cvs/pvfs-2-8-branch.build/doc/pvfs2-faq/pvfs2-faq.php
http://http://www.pvfs.org/cvs/pvfs-2-8-branch.build/doc/pvfs2-faq/pvfs2-faq.php
http://http://www.pvfs.org/cvs/pvfs-2-8-branch.build/doc/pvfs2-faq/pvfs2-faq.php
http://www.storageperformance.org/results/b00016_Sun-ST6140-Mirroring_SPC2_executive-summary.pdf
http://www.storageperformance.org/results/b00016_Sun-ST6140-Mirroring_SPC2_executive-summary.pdf
http://www.storageperformance.org/results/b00016_Sun-ST6140-Mirroring_SPC2_executive-summary.pdf
http://iperf.sourceforge.net
http://iperf.sourceforge.net
http://www.iozone.org/docs/IOzone_msword_98.pdf
http://www.iozone.org/docs/IOzone_msword_98.pdf
http://cdsagenda5.ictp.it/full_display.php?ida=a10135
http://cdsagenda5.ictp.it/full_display.php?ida=a10135



