
Energy efficiency and
application-level energy profiling

Moreno Baricevic

Summary

● background

● software tools

● testbed

● benchmarks and methods
● results

● observations

Why energy efficiency
is a hot topic?

● due to energy cost and sustainability, power
consumption of data centers is one of the rising
problems, as well as the main limiting factor for the
development of exascale systems

● “green” computing more often coupled to HPC, introducing
concept of “high-efficiency” computing (Top500
complemented by Green500)

● the cost in energy during cluster life cycle may be
comparable to its acquisition cost

What the growing interest in
energy efficiency is leading to?

● growing need for energy-aware resource management
and scheduling

● energy profiling of applications gives important information
about the “cost in energy” of running a specific code on a
specific machine (using a specific library)

● hardware/software probes reporting near-real-time power
consumption, and interface software to access this
information

How to reduce the power
consumption of HPC resources?

● policy-based automatic power management
(idle nodes into power saving modes, power on/wake nodes for new workload, ...)

● exploit hardware capabilities: DVFS / power-saving
states / performance states / turbo mode

● power capping policies (maximum amount of overall
admitted power consumption)

● assign workload to highest performance-per-watt
resources first

● energy-aware resource management systems and
schedulers able to exploit all of the above, implementing
out-of-band and unattended energy assessment out-of-band and unattended energy assessment
capabilitiescapabilities

How to measure the power
consumption?

● external hardware-dependent probes and sensors, PDUs,
power grid counters

● local machine hardware sensors

● metrics obtained accessing hardware counters available
on most major microprocessors

RAPL (Running Average Power Limit) (MSR by INTEL)
– monitors, controls, and gets notifications on SoC power

consumption (platform level power capping, monitoring and
thermal management)

Power Management and
Acquisition Software

● Eurora Monitoring Framework (Micrel Lab's sw developed for Eurora)

– msr-statd: MSR/RAPL acquisition software
(C program revised, improved, now linked to hwloc)

– gpu-statd: GPU status info
(Python script interfaced to NVidia Management Library (nvml))

● linux perf in order to access and collect performance counters
(used as well for the top-down characterization)

● cpufreq-utils in order to modify the CPU frequency scaling
governor and CPU frequencies (require super-user's privileges)

● various ad-hoc parsers and wrapper scripts (bash, awk, sed,
perl, python, C)

Core LLC slice

Core LLC slice

Core LLC slice

Core LLC slice

System
Agent IMC

PECI PCU

SVID

 PCI ExpressQPI
QPI DMI

..
.

..
.

RAM

RAM

RAM

RAM

Software stack, CPU
sub-systems & RAPL domains

Software stack Ivy Bridge sub-systems
and RAPL domains

perf_events

c0 c1

c4 c5

c2 c3

c6 c7

c8 c9 c10 c11

socket 0

c12 c13

c16 c17

c14 c15

c18 c19

c20 c21 c22 c23

socket 1

socket
core
PMC

/dev/cpu/0/msr
/dev/cpu/1/msr

(arbitrary) designated
source for socket-wide
counters (1st core of
each socket)

H
ar

dw
ar

e
K

er
ne

l-
sp

ac
e

U
se

r-
sp

ac
e

MSR driver

perf
msr_daemon
msr-tools
likwid

pmu-tools
PAPI
libpfm4
...

PMU PMU

low-level tools, libs and APIs

high-level tools and applications

Package domain

Power Plain 0 domain

DRAM
domain

UNCOREUNCORE

CORECORE

D
R

A
M

D
R

A
M

Testbed

C3E (CO.S.IN.T. Cloud and Cluster Environments)
● 2 Aurora Chassis

– 6 Aurora computing nodes, 24 cores each

– 4 Aurora computing nodes, 24 cores & 2x NVidia K20 each
● SLURM cluster: 1 VM hosting a dedicated masternode + 2

(physical) computing nodes

Each Aurora blade:

● Intel Xeon Ivy Bridge EP E5-2697 v2 @ 2.70 GHz, 12 cores,
30MB L3, in a dual-socket server configuration (Romley)

● 64GB RAM

Benchmarks

● 2 well-known benchmarks

– HPL (CPU-bound app.)

– HPCG (memory-bound app.)

● 2 real-world scientific applications

– Quantum ESPRESSO (Palladium simulation)

– LAMMPS (Lennard-Jones liquid benchmark)

from scheduler perspective, the code is a black-box

Benchmarking and Analysis

● benchmarks tuning runs

● energy profiling of well-known applications (HPL, HPCG) and
real-world applications (QE, LAMMPS)

● comparison through top-down characterization

● comparison through performance counters

● comparing performance and energy efficiency changing
frequency and problem size (looking for a trade-off for
memory-bound applications)

● comparing different BLAS libraries (Netlib, ATLAS, OpenBLAS,
MKL) using HPL through all the aforementioned methods

● HPL and frequency scaling coupled to GPU

Benchmarking and Analysis

category test
HPL

HPCG QE LAMMPS
Netlib ATLAS OpenBLAS MKL

energy
efficiency
(RAPL)

basic analysis & tuning (*) x x x x x x x

frequency scaling (**) x x x x x x

problem size scaling (**) x x x x x

frequency scaling + GPU x

multinode (*) x

performance
counters (*)

top-down analysis x x x x x x x

cache-miss, branch mispr. x x x x x x x

FLOPS from counters x x x x

exp. cache-miss (***) x x x x

(*) with ondemand governor (automatic frequency scaling w/ Turbo Boost)
(**) only for memory size 1/4 and 1/8
(***) experimental tests using various combinations of cache-related performance events

Top-down characterization and
performance counters analysis

● TOP-DOWN characterization of pipeline slots

– stalled: front-end bound, back-end bound

– not stalled: bad speculation, retiring

● performance counters analysis

– cache-miss ratio (top-down BE-bound)

– branch-misprediction (top-down bad-speculation)

Instructions Front-End

Data
Back-End Results

a += 1 if a > 2 a = x
x += 1

x += 2

Why comparing BLAS libraries?

● several implementations available

– NETLIB (reference library)

– ATLAS (compile-time automagic optimization)

– MKL (INTEL proprietary libraries)

– OpenBLAS (free/open high-perf implementation)

● as the implementation changes, the achieved
performance can be very different, energy efficiency
must be different too (FLOPS/Watt - FLOPS/Joule)

Comparing BLAS implementations:
energy-efficiency

Comparing BLAS implementations:
top-down and perf. counters

HPL+MKL: frequency scaling

HPCG: frequency scaling

Comparison:
energy efficiency w/ freq. scaling

Comparison:
top-down and perf. counters

HPL+MKL: DVFS & GPU

4th position in
the Green500!

Results summary

● HPL and HPCG represent extremes, real-world lies
in-between

● unoptimized codes/libraries may lead to catastrophic
results (both for performance and energy-efficiency)

● OpenBLAS and MKL appear to be almost comparable

● energy-efficiency for memory-bound applications
benefits from down-clocking, useful under power
capping constraints

● GPU performance unexpectedly driven by CPU clock

Observations

● HPL is not necessarily a wise metric for choosing HW

● RAPL and performance counters represent powerful
tools for out-of-band/unattended profiling and
monitoring (energy-aware scheduling)

● performance counters are complex and difficult to
handle properly, several hidden caveats make them
difficult to be widely exploited, further study is required

Future perspectives

● better understand performance counters reliability and
profiling capabilities

● investigate GPU/MIC performance counters and DVFS
effects on power consumption and energy-efficiency

● integration of out-of-band energy consumption monitoring
in production environment (PBS/torque) with real-world
usage, as well as energy-aware scheduling (Micrel Lab)

● investigate power profiling capabilities of other devices,
platforms and infrastructures (overall and multi-node
power consumption and energy efficiency)

Ignored data and possible
further analysis

Thanks for your attention!

Any question?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

