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Why energy efficiency
is a hot topic?

● due to energy cost and sustainability, power 
consumption of data centers is one of the rising 
problems, as well as the main limiting factor for the 
development of exascale systems

● “green” computing more often coupled to HPC, introducing 
concept of “high-efficiency” computing (Top500 
complemented by Green500)

● the cost in energy during cluster life cycle may be 
comparable to its acquisition cost



What the growing interest in 
energy efficiency is leading to?

● growing need for energy-aware resource management 
and scheduling

● energy profiling of applications gives important information 
about the “cost in energy” of running a specific code on a 
specific machine (using a specific library)

● hardware/software probes reporting near-real-time power 
consumption, and interface software to access this 
information



How to reduce the power 
consumption of HPC resources?

● policy-based automatic power management
(idle nodes into power saving modes, power on/wake nodes for new workload, ...)

● exploit hardware capabilities: DVFS / power-saving 
states / performance states / turbo mode

● power capping policies (maximum amount of overall 
admitted power consumption)

● assign workload to highest performance-per-watt 
resources first

● energy-aware resource management systems and 
schedulers able to exploit all of the above, implementing 
out-of-band and unattended energy assessment out-of-band and unattended energy assessment 
capabilitiescapabilities



How to measure the power 
consumption?

● external hardware-dependent probes and sensors, PDUs, 
power grid counters

● local machine hardware sensors

● metrics obtained accessing hardware counters available 
on most major microprocessors

RAPL (Running Average Power Limit) (MSR by INTEL)
– monitors, controls, and gets notifications on SoC power 

consumption (platform level power capping, monitoring and 
thermal management)



Power Management and 
Acquisition Software

● Eurora Monitoring Framework (Micrel Lab's sw developed for Eurora)

– msr-statd: MSR/RAPL acquisition software
(C program revised, improved, now linked to hwloc)

– gpu-statd: GPU status info
(Python script interfaced to NVidia Management Library (nvml))

● linux perf in order to access and collect performance counters 
(used as well for the top-down characterization)

● cpufreq-utils in order to modify the CPU frequency scaling 
governor and CPU frequencies (require super-user's privileges)

● various ad-hoc parsers and wrapper scripts (bash, awk, sed, 
perl, python, C)
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Testbed

C3E (CO.S.IN.T. Cloud and Cluster Environments)
● 2 Aurora Chassis

– 6 Aurora computing nodes, 24 cores each

– 4 Aurora computing nodes, 24 cores & 2x NVidia K20 each
● SLURM cluster: 1 VM hosting a dedicated masternode + 2 

(physical) computing nodes

Each Aurora blade:

● Intel Xeon Ivy Bridge EP E5-2697 v2 @ 2.70 GHz, 12 cores, 
30MB L3, in a dual-socket server configuration (Romley)

● 64GB RAM



Benchmarks

● 2 well-known benchmarks

– HPL (CPU-bound app.)

– HPCG (memory-bound app.)

● 2 real-world scientific applications

– Quantum ESPRESSO (Palladium simulation)

– LAMMPS (Lennard-Jones liquid benchmark)

from scheduler perspective, the code is a black-box



Benchmarking and Analysis

● benchmarks tuning runs

● energy profiling of well-known applications (HPL, HPCG) and 
real-world applications (QE, LAMMPS)

● comparison through top-down characterization

● comparison through performance counters

● comparing performance and energy efficiency changing 
frequency and problem size (looking for a trade-off for 
memory-bound applications)

● comparing different BLAS libraries (Netlib, ATLAS, OpenBLAS, 
MKL) using HPL through all the aforementioned methods

● HPL and frequency scaling coupled to GPU



Benchmarking and Analysis

category test
HPL

HPCG QE LAMMPS
Netlib ATLAS OpenBLAS MKL

energy
efficiency
(RAPL)

basic analysis & tuning (*) x x x x x x x

frequency scaling (**) x x x x x x

problem size scaling (**) x x x x x

frequency scaling + GPU x

multinode (*) x

performance
counters (*)

top-down analysis x x x x x x x

cache-miss, branch mispr. x x x x x x x

FLOPS from counters x x x x

exp. cache-miss (***) x x x x

(*) with ondemand governor (automatic frequency scaling w/ Turbo Boost)
(**) only for memory size 1/4 and 1/8
(***) experimental tests using various combinations of cache-related performance events



Top-down characterization and 
performance counters analysis

● TOP-DOWN characterization of pipeline slots

– stalled: front-end bound, back-end bound

– not stalled: bad speculation, retiring

● performance counters analysis

– cache-miss ratio (top-down BE-bound)

– branch-misprediction (top-down bad-speculation)

Instructions Front-End

Data
Back-End Results

a += 1 if a > 2 a = x
x += 1

x += 2



Why comparing BLAS libraries?

● several implementations available

– NETLIB (reference library)

– ATLAS (compile-time automagic optimization)

– MKL (INTEL proprietary libraries)

– OpenBLAS (free/open high-perf implementation)

● as the implementation changes, the achieved 
performance can be very different, energy efficiency 
must be different too (FLOPS/Watt - FLOPS/Joule)



Comparing BLAS implementations:
energy-efficiency



Comparing BLAS implementations:
top-down and perf. counters



HPL+MKL: frequency scaling



HPCG: frequency scaling



Comparison:
energy efficiency w/ freq. scaling



Comparison:
top-down and perf. counters



HPL+MKL: DVFS & GPU

4th position in
the Green500!



Results summary

● HPL and HPCG represent extremes, real-world lies 
in-between

● unoptimized codes/libraries may lead to catastrophic 
results (both for performance and energy-efficiency)

● OpenBLAS and MKL appear to be almost comparable

● energy-efficiency for memory-bound applications 
benefits from down-clocking, useful under power 
capping constraints

● GPU performance unexpectedly driven by CPU clock



Observations

● HPL is not necessarily a wise metric for choosing HW

● RAPL and performance counters represent powerful 
tools for out-of-band/unattended profiling and 
monitoring (energy-aware scheduling)

● performance counters are complex and difficult to 
handle properly, several hidden caveats make them 
difficult to be widely exploited, further study is required



Future perspectives

● better understand performance counters reliability and 
profiling capabilities

● investigate GPU/MIC performance counters and DVFS 
effects on power consumption and energy-efficiency

● integration of out-of-band energy consumption monitoring 
in production environment (PBS/torque) with real-world 
usage, as well as energy-aware scheduling (Micrel Lab)

● investigate power profiling capabilities of other devices, 
platforms and infrastructures (overall and multi-node 
power consumption and energy efficiency)



Ignored data and possible
further analysis



Thanks for your attention!

Any question?
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